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Executive summary  
 

This document reports on the initial implementation of the use cases (UCs) that form the core of 
the UNDERPIN project, following their identification and planning, as reported in deliverable 
D4.1: “Use case planning report”. The work presented here builds on the results of the 
aforementioned deliverable, reflecting on the efforts of tasks T4.2: “Use case trials execution” 
and T4.3: “Trials performance evaluation and lessons learned”. The present document forms the 
initial version of D4.2: “Use case validation and lessons learned”, hereby labelled as “mid-term 
report”, serving as the basis for the final report, due in M24. 

The primary goal of the document pertains to discussing the initial stage of UC implementation, 
presenting first results and deducing lessons learned that can inform future decisions and steps 
to be followed. The UCs that were selected in order to showcase the functionality and benefits of 
UNDERPIN are presented in the following table: 

Identifier Title Pilot 
UC1.1 Monitoring and predictive maintenance in the refinery Refinery 
UC2.1 Predictive maintenance in wind farms Wind farms 
UC2.2 Wind turbine blade repair prediction Wind farms 

 

For each UC, a status update is provided including the initial set of results, which offer the basis 
for a first evaluation of the UC implementation and processes. This is followed by a roadmap 
where future steps to be followed are delineated in order to streamline the procedure and ensure 
alignment between the involved parties. The deliverable also reflects on the lessons learned so 
far from the implementation of the UCs, taking different points of view into account. 
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1 Introduction 
 

1.1 Purpose and scope 

UNDERPIN is a manufacturing Data Space (DS) that facilitates the efficient use of industrial data 
with a focus on dynamic asset management and predictive maintenance procedures. Through 
providing a trusted platform for data sharing and exchange, UNDERPIN will foster the 
collaboration between large industry players and SMEs in a bid to improve products, services, as 
well as business operations of the involved parties. 

To showcase this potential, a set of use cases (UCs) has been identified, planned and is currently 
at the implementation stage. Following the work presented in D4.1: “Use case planning report”, 
the present document looks to elaborate on the implementation of the three identified UCs, 
providing a status update on the ongoing work, while also attempting to draw useful conclusions, 
that can be utilized as lessons learned, not only for improving the implementation of the selected 
UCs, but also as guidance for other stakeholders joining UNDERPIN, as well as similar efforts in 
other DS. 

This deliverable contains the work performed so far in the context of tasks T4.2: “Use case trials 
execution” and T4.3: “Trials performance evaluation and lessons learned”. This mid-term report 
comprises a first version of deliverable D4.2: “Use case validation and lessons learned”, setting 
the building blocks for a final version, due in M24 of the project (coinciding with its completion). 

1.2 UNDERPIN use cases 

After a multi-step process that involved a technical workshop, followed by specialized meetings 
with subject experts from MOH and MORE, the following three UCs were identified: 

• UC1.1: Monitoring and predictive maintenance in the refinery: A predictive maintenance 
algorithm will be developed that will allow for predicting equipment failure as well as detecting 
abnormal behaviour trends in the refinery’s compressors, with the aim of reducing downtime and 
increasing the lifetime of the machinery. 

• UC2.1: Predictive maintenance in wind farms: A predictive maintenance algorithm will be 
developed that will allow for predicting equipment failure as well as detecting abnormal 
behaviour trends in wind turbines, acting as a benchmark for the maintenance operations carried 
out by contractors. 

• UC2.2: Wind turbine blade repair prediction: Statistical analysis of wind turbine blade 
damages from lightning strikes and prediction of necessary blade repairs based on relevant 
historical data, in order to understand the impact of lightning strikes on blade damage and avoid 
catastrophic blade failure through timely repairs. 

For a more detailed description of each UC, the reader can refer to D4.1: “Use case planning 
report”, although additional information in a consolidated form is also provided in the respective 
sections of the present document. 

1.3 Structure of the document 

The structure of the deliverable is as follows:  

• Section 1 presents a brief overview of the UCs and the scope of this deliverable 
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• Section 2 elaborates on the work performed regarding UC1.1: “Monitoring and predictive 
maintenance in the refinery”. 

• Section 3 gives a detailed description on the implementation of UC2.1: “Predictive 
maintenance in wind farms” to date. 

• Section 4 consists of an initial examination and literature review of UC2.2: “Wind turbine 
blade repair prediction”. 

• Section 5 highlights the lessons learned from the inception and initial execution of the 
UCs with respect to the DS itself, the stakeholders and UC implementation. 

• Section 6 summarises the outcomes of this deliverable. 

For each UC specific section, an overview of the UC is initially provided, followed by a detailed 
description of the work that has been performed until now. The sections conclude with a roadmap 
of next steps that are planned for subsequent work on the implementation and execution of the 
UCs. 
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2 UC1.1: Monitoring and predictive maintenance in the 
refinery 

 

2.1 Use case description 

The goal of this UC is to develop a predictive maintenance model for selected machinery from the 
refinery. The process pertains to collecting data from five different compressor machine groups 
along the main refinery process, which is subsequently analysed and processed through 
specialized machine learning (ML) algorithms with the aim of monitoring equipment performance 
and predicting impeding failures.  

The datasets used for this UC consist of sensor data collected from multiple refinery 
components, covering operational periods from 2017 to 2020, and additional data from 2022. 
These datasets are stored in HDF5 files and, for initial exploration, in CSV samples. The data's 
temporal granularity varies between every five minutes for the years 2017-2020 and every one 
minute for 2022. This diverse data, collected through sensor networks, offers rich insights into 
refinery processes. However, the UC faces several challenges, including significant differences 
in the operational data between the years, which affect model training, as well as data 
preprocessing complexities such as missing values and timestamp corrections. 

For each sensor in the dataset, thresholds were provided. Our approach is to create Timeseries 
prediction models that forecast values 1 day in advance (as required). In case the forecasted 
value violates a threshold, we consider this an anomaly of the system, and an alert is raised.  

Consolidated information regarding this use case is presented in Table 1. For a more detailed 
description, the reader can refer to D4.1: “Use case planning report”. 

Table 1: UC1.1 consolidated information 

Title Monitoring and predictive maintenance in the refinery 

Description 
A predictive maintenance algorithm will be developed that will allow 
for predicting equipment failure as well as detecting abnormal 
behaviour trends 

Use case owner MOH (maintenance) 
Involved partners MOH, AIT, SPH, INNOV 

Assets 5 compressor machine groups from the main process of the refinery 

Expected outcomes 
Asset owner will be able to appropriately schedule maintenance 
works for impeding failure, as well as apply corrective actions without 
interrupting operations based on detected abnormal behaviour 

Datasets involved Sensor data (temperature, pressure, vibration and axial 
displacement)  

Data structures Format: .xls/.csv 
Granularity: 5 minutes 

Existing infrastructure - Operations monitored through SAP and SCADA systems 
- Preexisting predictive maintenance model  

Challenges Insufficient failure data may lead to low accuracy of predictive 
algorithm 
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2.2 Status update 

2.2.1 Initial results 

Data provided for this UC consist of two pillars – the operational data of 2022 (sampled at 1 
minute) as well as historical data ranging from 2017 to 2020, sampled at 1 minute and 5 minutes, 
respectively. 

Initial exploration of the data revealed substantial differences between operational data from 
2022 and earlier data from 2017-2020. To better understand these differences, statistical tests, 
specifically the Kolmogorov–Smirnov  test [1] and Student's t-Test [2], were applied to compare 
the distributions of sensor readings across different years.  

The Kolmogorov–Smirnov test was used to determine whether the sensor readings from different 
years follow the same distribution, focusing on identifying differences in their cumulative 
distributions.  

Student's t-Test, on the other hand, was applied to compare the means of the sensor readings 
from 2022 with those of previous years, helping to determine whether any significant difference 
existed between their average values. 

Results from these tests confirmed that the operational conditions in 2022 were significantly 
different from those observed in previous years. Therefore, to ensure the models being 
developed are trained on the most relevant and representative data, the decision was made to 
use only the 2022 dataset for the predictive maintenance model. This dataset captures the most 
current state of refinery operations and is more likely to reflect recent changes in equipment or 
process conditions, ensuring that predictions are aligned with real-world scenarios. 

Data Preprocessing: 

The preprocessing of this data was an essential and complex undertaking, involving several key 
steps: 

1. Data Loading: First, the sensor data was loaded and merged from multiple HDF5 and 
Excel files, and a consistent datetime format was ensured across the dataset. 

2. Timestamp correction: In the originally stored operational data of 2022, some individual 
timestamps were incorrect, as only the date was recorded instead of both the date and 
time. The preprocessing checks if the timestamps are incomplete and attempts to fill in 
the missing time by using the timestamp from the next row, provided it’s available and 
valid. Each modified timestamp is reformatted as a string and saved back. 

3. Data Cleaning: The data was cleaned to handle missing values and duplicates, with any 
duplicated timestamps being removed to ensure the chronological integrity of the time 
series. The aggregated yearly values contained duplicate entries, which were also 
removed to ensure data accuracy and consistency. 

4. Resampling: The data was resampled to a uniform sampling rate, specifically every 60 
seconds, using custom aggregation techniques for different sensors. 

5. Inactive periods removal: Based on some control sensors, we were able to identify 
periods during 2022 that each machine was inactive (for unidentified reasons). We 
removed those periods from our datasets (by replacing the sensor values to NaN). We 



  
 D4.2 Use case validation and lessons learned – mid-term report 

 

13 
 

This project has received funding from the Digital Europe 
Programme under grant agreement No 101123179 

added 1 day padding before and after each period, to avoid utilizing skewed values in our 
model training and evaluation. 

6. Feature engineering: This step involved the addition of an 'under_maintenance' flag to 
indicate whether a given data point occurred during a maintenance period. Additionally, 
the column 'missing_values,' was also added to indicate rows with missing sensor data 
rather than imputing these missing values, which could introduce bias. 

 

Statistical Analysis: 

A tool was developed, which allows time-series datasets to be analysed efficiently. It provides an 
overview of key patterns and trends, helping data consumers who are potentially interested in the 
dataset to gain a clearer understanding of its content and significance. By offering insights into 
the data's structure, the tool aids in identifying important features and areas of interest, 
facilitating a more informed exploration of the dataset. In Figure 1, the histogram of a specific 
sensor, which measures the temperature of a component, is exemplarily presented. 

 
Figure 1: Histogram of the sensor “22TI123”. 

In addition, in order to assist model development, statistical analysis was performed to better 
understand the structure and properties of the dataset. 

Descriptive statistics were calculated for each sensor, including metrics such as mean, standard 
deviation, minimum, maximum, and quartiles, with summaries saved for documentation. 
Sensors common to both datasets were identified, and percentage differences in statistical 
properties, like mean and standard deviation, were calculated to compare data from different 
years.  Visualizations such as histograms and time series plots were also created to observe 
trends and highlight key differences, with operational thresholds overlaid to facilitate anomaly 
identification. 

In Figure 2, we can see the linechart of a sensor, along the thresholds that were provided. 
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Figure 2: Linechart of the sensor “5FI001A”. 

 

The primary objective of model development is to predict sensor readings and detect anomalies 
that could indicate potential equipment failures. We are planning to test both univariate and 
multivariate modeling approaches, including statistical, machine learning (ML), and deep 
learning methods, to identify the best fit for predictive maintenance in refinery settings.  
 
So far, only univariate statistical and ML models have been tested. The models tested so far 
include both traditional statistical methods and more advanced ML techniques. For statistical 
methods, Exponential Smoothing [3] was tested with a 10-day history window, and ARIMA  [4] 
was applied using a 20-day history window. These models provided a baseline understanding of 
the data's temporal dynamics.  

In addition, ML methods such as Random Forest Regressor [5] and Linear Regression [6] were 
implemented, both using a 10-day history window in a univariate setting.  This means that we 
trained a model for each sensor and created a wrapper function that calls all of them to make 
predictions for the entire sensor pool. 

To keep the results consistent and comparable, an 80-20 split was done, using approximately 10 
months for training and the last 2 months (November and December) for testing. The data was 
also resampled to an hourly frequency. 

No hyperparameter tuning was done for any of the models; instead, we aimed to observe their 
performance out of the box in order to decide which ones to fine-tune later. The statistical models 
were evaluated using rolling predictions, while the ML models were tested using one-shot 
predictions—predicting one value 24 hours ahead, without using the previous 24-hour 
predictions for subsequent time points. 

One difficulty we faced was the evaluation (and comparison) of the models. In every experiment, 
we are building separate models for each sensor, but we need to somehow evaluate 
aggregational metrics over all of the sensors. Since the sensors are different in nature, their 
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scales significantly differ, so we cannot use absolute value metrics. We decided to move forward 
with Mean Absolute Percentage Error (MAPE), which we calculate over each sensor and then 
aggregate.  

Our goal was to utilize the mean MAPE over all sensors to evaluate the performance of a model 
(across all sensors). However, we are getting very high values of mean MAPE. We researched this 
issue by checking the median value of MAPE and some indicative percentile values. We 
determined that even though the models are performing at an acceptable level in the vast majority 
of the sensors, there are a few problematic cases with very large values of MAPE (even 50000% in 
some cases). 

 

Figure 3: Predicted vs Actual values of the sensor “32XI457” 

 

Upon visual inspection of the problematic sensors, we confirmed that the models generally 
perform well, so they are not responsible for the large values of MAPE. However, the issue of 
extreme values arose due to a “division by zero” error, a common challenge when using the MAPE 
evaluation metric. As illustrated in Figure 3, numerous values in the dataset are either very close 
to or exactly zero. 

Initially, we considered filtering out values near zero to mitigate this issue, but this approach was 
ultimately deemed scientifically unsound, as it risked discarding non-problematic data points. 

Instead, we focused on exploring alternative evaluation metrics that could avoid the “division by 
zero” problem. After thorough research, we identified two suitable MAPE variations: 

• Median Absolute Percentage Error (MdAPE): Unlike MAPE, which uses the mean, 
MdAPE uses the median of the absolute percentage errors. This makes it less sensitive to 
outliers and the division by zero problem, providing a more robust central tendency. 
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• Weighted Mean Absolute Percentage Error (WMAPE): WMAPE adjusts the MAPE 
formula by weighting errors based on the magnitude of the actual values, reducing the 
impact of small or zero values and allowing a more balanced assessment across different 
scales of data. A clear advantage of this metric is that the mathematical formula that 
calculates it eliminates the “division by 0” problem.  

We tested both MdAPE and WMAPE and compared them to the previously calculated MAPE 
values for sensors with both reasonable and extreme MAPE scores. The comparison revealed 
that, while both metrics effectively addressed the division by zero issue, WMAPE proved to be 
more reliable. For sensors with typical MAPE values, WMAPE produced results close to MAPE, 
maintaining consistency. For sensors with anomalous MAPE scores, WMAPE provided 
reasonable, stable results. 

MdAPE, although effective for problematic sensors, also altered values we deemed reasonable, 
primarily due to the inherent differences between mean (used in MAPE) and median (used in 
MdAPE). Consequently, we chose WMAPE as our preferred metric for evaluations. 

The results for the models we have tested are in Table 2. 

Table 2: Mean Absolute Percentage Errors (MAPE) for each model 

Model Mean WMAPE (%) 
Exponential Smoothing 9.2 
Arima 6.6 
Random Forest Regression 19 
Linear Regression 5.7 

 

As we can see, Linear Regression is the model with a slight advantage over the others. In order 
to get a deeper understanding on the model’s performance across different metrics, we have 
visualised the predictions along with the actual values on the test set (Figures 3-4). 
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Figure 4: Linear Regression predictions and Actual values for the sensor “75TI828”. 

 
Figure 5: Linear Regression predictions and Actual values for the sensor “75TI834”. 

The requirement set out by the refinery for this metric is MAPE < 3%. The best model right now is 
achieving a mean WMAPE of 5.7%, which is not sufficient. However, keeping in mind that we will 
be experimenting with several other models, as well as hyperparameter tuning the best ones, we 
are very optimistic that the goal will be reached in the later stages of our implementation. 

 

2.2.2 Infrastructure 

 
Figure 6: Dataflow of refinery demonstration 

 

As we progress in developing the Predictive Maintenance models, it is essential to remain 
cognizant of the operational context and the target deployment environment. Consequently, we 
have integrated our current models into the data processing pipeline illustrated in Figure 6. 



  
 D4.2 Use case validation and lessons learned – mid-term report 

 

18 
 

This project has received funding from the Digital Europe 
Programme under grant agreement No 101123179 

In this scenario, MOH serves as the data provider, supplying refinery sensor readings and 
anticipating statistical analyses as well as the outcomes of the Predictive Maintenance model. 
These results will be visualized on the UNDERPIN dashboard, which operates within the DS. 

SPH functions as the data consumer, receiving the data transmitted by MOH, conducting the 
required analysis and model inference, and generating the results. 

The whole process described above will follow these steps: 

Data analysis & PrM workflow: 

1. MOH negotiates a contract with SPH in order to send them refinery sensor readings (a 
contract is established between the MOH and SPH connectors) 

2. MOH sends a REST POST request to SPH (forwarded through the DS), containing the data 
they want processed 

3. SPH receives the request and analyses the data 
4. The results are stored in SPH’s premises 
5. A “Success” message is returned to MOH (not results) 

Result visualisation: 

1. MOH connects to the Dashboard (operating on the DS infrastructure) using their 
credentials (not a connector) 

2. The Dashboard makes a REST GET request to SPH through the connector to receive some 
results 

3. SPH receives the request and responds with the results that were asked 
4. The Dashboard visualizes the results 

 

2.3 Roadmap for next steps 

We are currently at a stage in model development where the training and evaluation pipeline is 
established, and data preparation is at a good point. While these components are not yet 
finalized, they are stable, and we do not anticipate making significant changes to them in the near 
future. Our primary focus now will be to explore a broader range of models and approaches, 
identify the most promising candidates, and fine-tune them to achieve optimal performance. 

The roadmap for the next steps to commence within Q1 2025 is as follows: 

1. Continue experimentation with Univariate Prediction models 
2. Conduct experiments with Multivariate Prediction models 
3. Evaluate and compare model performance 
4. Select the best models for further tuning 
5. Ensure the selected model is containerized (e.g., via Docker) for integration into the 

deployment pipeline 

By following these steps, we aim to develop a robust Predictive Maintenance model that is not 
only optimized for performance but also prepared for deployment and scalability within a real-
world system. 
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3 UC2.1: Predictive maintenance in wind farms 
 

3.1 Use case description 

The goal in this UC is the timely prediction of failures in major components of wind turbine 
generators (WTG). Similarly to UC1.1, this procedure is performed through a predictive 
maintenance model, making use of specialized ML algorithms. In this case, the operator is not 
directly responsible for performing maintenance on the wind turbines. Instead, maintenance is 
performed by a third party through a relevant long-time service agreement. Therefore, the 
expected outcome of this UC is for the wind farm (WF) operator to be able to monitor potential 
abnormalities in the operation of the WF, while also benchmarking the maintenance works 
performed by the contractor. A summary of important information regarding UC2.1 is provided in 
Table 3, and the reader is referred to D4.1: “Use case planning report” for a more detailed 
description of the UC. 

Table 3: UC2.1 consolidated information 

Title Predictive maintenance in wind farms 

Description 
A predictive maintenance algorithm will be developed that will allow 
for predicting equipment failure as well as detecting abnormal 
behaviour trends 

Use case owner MORE (operations) 
Involved partners MORE, AIT, SPH, INNOV 

Assets Wind turbine generators from MORE’s wind farm portfolio 

Expected outcomes 
Asset owner will be able to optimize operations based on detected 
abnormalities, as well as benchmark the maintenance works carried 
out by contractor 

Datasets involved Sensor data from multiple components within the wind turbine 
Fault alarms and warnings 

Data structures Format: .xls/.csv 
Granularity: Every 10 mins 

Existing infrastructure Operations monitored through proprietary SCADA systems offered by 
wind turbine manufacturers 

Challenges Loss of communication with wind turbines means alarms and errors 
may not always be detected 

 

An overview of the failures of major components shows that the generator (with over 72%) is the 
component that most frequently fails and needs to be replaced. Therefore, we have decided to 
focus on this component first. 

3.2 Status update 

3.2.1 Initial results 

The onshore WF under consideration is located on a Greek island and has been operational since 
2009. It consists of ten WTGs. The WF’s data used in this project is communicated by the Object 
Linking and Embedding (OLE) for Process Control (OPC) and stored in the Open Database 
Connectivity (ODBC) server. The initial data provided was collected from the Supervisory Control 
and Data Acquisition (SCADA) systems of the WTGs over a 12-month period (01/01/2019- 
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31/12/2019) using a variety of sensors configured to measure key operational variables, such as 
wind speed, pitch angle, temperatures etc. at 10-minute raw intervals.  

Data Preprocessing: 

In the originally stored production data, some individual timestamps were incorrect, as only the 
date was recorded instead of both the date and time. This resulted in incomplete or inaccurate 
timestamp entries for certain data points. To correct these false timestamps, we leveraged the 
information from neighbouring timestamps and the known time interval of 10 minutes between 
consecutive entries. By using the correct neighbouring timestamps as reference points, we were 
able to reconstruct the missing time values and ensure that the corrected timestamps adhered 
to the expected 10-minute interval. There are different methods to fill missing values in cells, such 
as forward fill, backward fill, interpolation, or using a constant value. We decided, however, not 
to fill any missing values but instead added the column “missing data” which indicates if a 
timestamp is available but any sensor data missing. 

Statistical Analysis: 

A tool was developed, which allows time-series datasets to be analysed efficiently. It provides an 
overview of key patterns and trends, helping data consumers who are potentially interested in the 
dataset to gain a clearer understanding of its content and significance. By offering insights into 
the data's structure, the tool aids in identifying important features and areas of interest, 
facilitating a more informed exploration of the dataset. In Figure 7, the histogram of a specific 
sensor is exemplarily presented. 

 
Figure 7: Histogram of the Generator Bearing Temperature of WTG01 

  
Model design:  

A literature review indicates that the generator bearing temperature is commonly used to predict 
the health of the generator [7]. Consequently, the target variable we aim to model is the generator 
bearing temperature – our specific WTG has two bearings. Since we are conducting post hoc 
monitoring, we can leverage measurements of any unidirectional causal signals at time T to 
model the normal operating range at the same time T. The input features we will use include 
generator rotational speed, nacelle temperature, and generated active power. 

The following features are selected – all values are measured over a ten-minute interval: 

• Generator Bearing Temp. Avg. [°C]:  Average temperature of the generator bearing. 
• Generator Bearing2 Temp. Avg. [°C]:  Average temperature of the generator bearing 2. 
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• Generator RPM Max. [RPM]: Maximum rotations per minute. 
• Nacelle Temp. Avg. [°C]:  Average temperature of the nacelle. 
• Production Latest Average Active Power Gen 0/1 Avg. [W]: Average Power Production by 

generator 0/1. 
• Generator Cooling Water Temp. Avg. [°C]: Average temperature of the water circulating 

through the generator’s cooling system. 
• Rotation on/off: The generated feature tracks the number of time steps since the last 

instance when Generator RPM Max crossed a specific threshold (e.g. we use 1000 RPM). 
A positive value is recorded if it crossed from below the threshold to above, and a 
negative value if it crossed from above to below. It serves as a proxy for heat build-up 
and stagnation over time, capturing the frequency and duration of operational changes 
in the generator's RPM. 

• Missing data: Generated feature - whether data is missing in the dataset. 
 

All the selected features demonstrate positive correlations with the generator bearing 
temperature, meaning that as these features increase, so does the temperature of the generator 
bearing (Figure 8). Among these, nacelle temperature—which varies due to factors like daily 
temperature cycles and seasonal changes—and power generation show the strongest positive 
correlations, indicating that they have the most significant influence on the bearing temperature. 

 
Figure 8: Visualizing the strength of relationships between features and generator bearing temperature, highlighting 

key positive correlations with features like nacelle temperature and power generation. 
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In cases where some features exhibit high variability or noise due to frequent fluctuations (e.g., 
rapid changes in environmental conditions or operational parameters), this noise can obscure 
underlying patterns in the data. To address this, we can apply a moving average filter to smooth 
out short-term variations and highlight longer-term trends. By reducing the impact of noise, this 
filtering technique can potentially increase the observed correlation between the features and 
generator bearing temperature, leading to clearer insights. 

The boxplot in Figure 9 reveals the difference in the generator bearing temperatures between both 
bearings. This variation suggests that the temperature distribution and behaviour differ 
substantially across the bearings. As a result, it indicates that a separate model needs to be 
trained for each bearing to accurately capture the unique characteristics and operating 
conditions of their respective generator bearing temperatures. Training individual models 
ensures that the predictions are tailored to the specific behaviour of bearing, leading to more 
reliable and precise monitoring. 

 
Figure 9: Boxplot comparing the generator bearing temperatures of two wind turbines, highlighting the significant 

differences in temperature distribution between both bearings. 

Since our predictive maintenance model is applied post hoc, we can model the generator 
temperature at any given time using actual sensor data from that moment. To accomplish this, 
we configure the model to predict one time step at a time. We use a probabilistic model to 
forecast generator bearing temperature quantiles, serving as a proxy for the normal temperature 
range, with the likelihood set to "quantile" and quantiles defined as [0.05, 0.50, 0.95]. To ensure 
causal flow, past temperature data is not used as input. Instead, we rely solely on the previous 
introduced features, as data from other sensors is available for temperature prediction at a 
specific time step. Additionally, we include calendar features, such as the month and hour of the 
day, to capture seasonal and diurnal patterns (e.g., temperature variations influenced by the time 
of year or day/night cycles). 

We are training multiple models, including the CatBoost model [8], the XGBoost model [9] and 
theLightGBM model [10], which support probabilistic forecasts. CatBoost (Categorical Boosting) 
is a gradient boosting algorithm designed to handle categorical features efficiently without 
requiring extensive preprocessing, making it highly suited for datasets with mixed feature types. 
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Its ability to automatically encode categorical variables and mitigate overfitting through 
advanced regularization techniques makes it particularly robust in complex tasks. On the other 
hand, XGBoost is another powerful gradient boosting algorithm known for its efficiency and 
scalability. XGBoost excels in handling large datasets and provides flexible customization 
options, such as tree-based models and regularization parameters, allowing us to fine-tune the 
model for higher accuracy and better performance. XGBoost is particularly known for its speed 
and precision in classification and regression tasks. LightGBM (Light Gradient Boosting Machine) 
is a fast, high-performance gradient boosting framework, which excels in both regression and 
classification tasks, especially with structured data, and includes methods for handling missing 
values and imbalanced datasets. All models are based on the implementation of Darts [11]. 

For training and evaluation, the data was divided into two segments: the training period (01-2019 
to 09-2019) and the evaluation period (10-2019 to 12-2019). During this time, only a single major 
generator failure occurred (November 25th, 2019, to December 18th, 2019), limiting the robustness 
of any thorough evaluation. Consequently, this report focuses primarily on demonstrating the 
principal workflow and verifying the feasibility of the approach. Fine-tuning and enhancements 
will be conducted in a follow-up phase, utilizing additional data from 2020 onward to improve 
model reliability and evaluation depth. The XGBoost models show good performance and are 
used in a first anomaly detection.  

Both trained models are used to generate a probabilistic forecast of the generator bearing 
temperature, relying solely on the previously defined covariates. The forecasted bearing 
temperature values have been replaced with NAN wherever the 'missing data' column is true, as 
the forecast cannot be considered reliable when portions of the covariate data are missing.  

Figure 10 and Figure 11 show the ground truth bearing temperature of both generators 
respectively as a black line, accompanied by the forecasted median temperature (quantile 50) 
represented by a dark blue line. The forecast uncertainty range, spanning quantiles 0.05 to 0.95, 
is illustrated by a light blue shaded area. Residuals, which may indicate anomalies, are marked 
in violet. In both figures, residuals are displayed. As a next step, we plan to implement a sliding 
window over the residuals - if enough values within the window exceed a predefined threshold, 
the corresponding time point will be flagged as an anomaly. This feature is yet to be implemented, 
but we aim to incorporate additional data, particularly more instances of generator bearing 
failures, to refine the sliding window design.  

The actual component failure of the generator occurred on November 25th, 2019. During the 
displayed timeframe, two significant residuals occur on November 12th and November 24th, 
potentially indicating anomalies. This suggests that the model based on the bearing temperature 
can predict failures. However, the residual on November 12th may represent a false alarm. In 
contrast, the model using bearing temperature 2 appears unable to predict the component 
failure. Instead, it generates several false alarms on November 11th, 15th, and 20th. These findings 
require further evaluation, incorporating additional data to draw more definitive conclusions. 
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Figure 10:  The graph depicts the ground truth bearing temperature (black line) alongside the forecasted median 

temperature (quantile 50, dark blue line) and the forecast uncertainty range (quantiles 0.05 to 0.95, light blue shaded 
area). Detected residuals, potentially indicating anomalies, are highlighted in violet. 

An additional step involves analysing the changes in generator bearing temperature of a WTG over 
time. There may be underlying trends, indicating that the models require periodic updates to 
maintain accuracy. Furthermore, variations in generator bearings across different WTGs could 
pose challenges, potentially necessitating the training of separate models for each WTG. This 
would complicate generalization, or in some cases, make it unfeasible. 
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Figure 11: The graph depicts the ground truth generator bearing 2 temperature (black line) alongside the forecasted 

median temperature (quantile 50, dark blue line) and the forecast uncertainty range (quantiles 0.05 to 0.95, light blue 
shaded area). Detected residuals, potentially indicating anomalies, are highlighted in violet. 

 

3.2.2 Infrastructure 

 
Figure 12: This diagram outlines the project's first iteration, highlighting how the DS enables advanced analytics like 

predictive maintenance as a service. 

A first demonstrator of a data processing pipeline using the designed DS for predictive 
maintenance is presented in Figure 12. In this specific scenario, the participant MORE would like 
to analyse its data and displays the results in the dashboard. The participant AIT offers a service 
for doing a statistical analysis of time-series data as well as carrying out predictive maintenance 



  
 D4.2 Use case validation and lessons learned – mid-term report 

 

26 
 

This project has received funding from the Digital Europe 
Programme under grant agreement No 101123179 

based on SCADA data. The actual data exchange between both participants is carried out by their 
connectors. Before any data exchange takes place, the involved participants need to agree on a 
contract which is stored in the connectors.  

In this scenario, MORE serves as the data provider, supplying SCADA readings and anticipating 
statistical analyses as well as the outcomes of the predictive maintenance model. These results 
will be visualized on the UNDERPIN dashboard, which operates within the DS. AIT functions as 
the data consumer, receiving the data transmitted by MORE, conducting the required analysis 
and model inference, and generating the results. 

The whole process described above will follow these steps: 

Data analysis & PrM workflow: 

1. MORE negotiates a contract with AIT to send their SCADA data. A contract is established 
between the connectors of MORE and AIT. 

2. MORE sends a REST POST request to AIT using its connector, where the request’s JSON-
formatted body contains the data needed for processing. 

3. AIT receives the request and analyses the data – data analysis or predictive maintenance.  
4. The results are stored in json format on AIT’s premises. 
5. MORE is notified that the analysis was carried out.  

Result visualisation: 

6. MORE connects to the Dashboard via an HTTP request using their credentials (not a 
connector). 

7. The Dashboard makes a REST GET request to AIT through the connector to receive the 
results. 

8. AIT receives the request and responds with the results that were requested. 

The Dashboard visualizes the results.   

3.3 Roadmap for next steps 

Up to this point, the basic model, based on bearing temperature, shows significant promise and 
will remain unchanged. In 2019, the generator of a single wind turbine (WTG5) experienced a 
failure and required replacement, providing only one instance of failure data for model training 
and validation. This limited dataset restricts the model's ability to generalize to multiple failure 
events, which may impact the robustness and accuracy of any anomaly detection models derived 
from it.  

However, we now have access to an extended dataset spanning from 2020 to 2024. During this 
period, the generators of the wind farm failed on seven additional occasions. These additional 
instances of generator failure provide a richer dataset that captures a broader range of 
operational conditions and potential failure signatures.  This allows the optimization of 
hyperparameters for training the gradient-boosted decision tree (GBDT) models, and the 
development of the sliding window mechanism. A key challenge in designing the sliding window 
lies in defining pre-set thresholds and parameters to ensure it operates both accurately and 
robustly. Since the data is available, the optimization of the GBDT models and design of the 
sliding window is expected to be finalized by Q1 2025. Moreover, the additional data enables a 
meaningful evaluation, which is not feasible with only a single anomaly. 



  
 D4.2 Use case validation and lessons learned – mid-term report 

 

27 
 

This project has received funding from the Digital Europe 
Programme under grant agreement No 101123179 

The first iteration of our system (based on the initial demonstrator as depicted in Figure 12)  will 
involve deploying predictive maintenance and statistical analysis components to the DS. This will 
allow all participants in the DS to take advantage of these tools. In addition, we plan on deploying 
the dashboard to provide users with a streamlined way to visualize their results.  
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4 UC2.2: Wind turbine blade repair prediction 
 

4.1 Use case description 

The final UC pertains to the development of a statistical and predictive model that analyses wind 
turbine blade damage from lightning strikes, traces the type and intensity of the lightning strikes 
and offers predictions for necessary blade repairs. In that sense, this UC acts as a subset of 
UC2.1, albeit one with a very specialized subject. As a result, UC2.2 follows a delayed timeline in 
order to take full advantage of the processes and knowledge gained from UC2.1, thus avoiding 
duplicate work. To that end, no results have been produced for this UC as of yet, and instead the 
outcomes of a literature review on the subject are presented. The expected outcome of the UC is 
that the wind farm operator is able to detect potential blade damage in a timely manner, aiming 
to prevent impeding blade failures by carrying out the required blade repairs. While lightning 
strikes will be the focus, as they are the main contributor to blade damage, the impact of strong 
winds will also be considered. 

Consolidated information regarding this use case is presented in Table 4. For a more detailed 
description, the reader can refer to D4.1: “Use case planning report”. 

Table 4: UC2.2 consolidated information 

Title Wind turbine blade repair prediction 

Description 
Statistical analysis of wind turbine blade damages from lightning 
strikes and prediction of necessary blade repairs based on relevant 
historical data 

Use case owner MORE (operations) 
Involved partners MORE, AIT, SPH 

Assets Wind farms from MORE’s portfolio with focus on two wind farms 
equipped with lightning strike monitoring equipment 

Expected outcomes 

Asset owner will: 
- gain deeper understanding on the impact of lightning strikes on 

wind turbine blades 
- be able to prevent impending blade failures by carrying out blade 

repairs in a timely manner 

Datasets involved 

Sensor data from multiple components within the wind turbine 
Fault alarms and warnings  
Historical data for peak current, time of lightning strike, strike 
intensity 
Blade repair historical data 

Data structures Format: .xls/.csv /.txt 
Granularity: Every 10mins 

Existing infrastructure 

Data collected through proprietary SCADA systems offered by wind 
turbine manufacturers 
Additional specialized data collected through Lightning Key Data 
(LKD) systems currently installed in two wind farms 

Challenges Low availability of lightning data since only two wind farms have LKD 
systems installed 
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4.2 Status update 

We conducted a comprehensive literature review to identify state-of-the-art (SOTA) fault 
detection methods for wind turbines, limiting our focus to those that rely on SCADA data since it 
is the source of operational data, which MORE provides. 

Yang and Zhang [12] proposed a novel conditional convolutional autoencoder (CCAE) for 
monitoring wind turbine blade breakages, which are trained on SCADA data. The results showed 
that the CCAE-based monitoring method achieved good performance in terms of the monitoring 
effectiveness and robustness with an accuracy of over 90%. Rezamand et al.in [13] developed a 
real-time hybrid fault detection strategy for wind turbine blades based on SCADA data. This 
approach combines Generalized Regression Neural Network Ensemble for Single Imputation 
(GRNN-ESI), Recursive Principal Component Analysis (RPCA), and Wavelet-based Probability 
Density Function (PDF) to accurately detect incipient blade failures. Experiments using SCADA 
data from a wind farm in southwestern Ontario showed that the wavelet-based PDF with RPCA 
method could enhance the reliability of fault detection by improving accuracy and reducing false 
alarm rates. It also demonstrated better early detection of blade faults compared to alternative 
approaches like wavelet-based PDF with Principal Component Analysis (PCA), wavelet-based 
PDF with Dynamic Principal Component Analysis (DPCA), and Support Vector Machine (SVM) 
techniques. Chandrasekhar et al. [14] considered the uncertain nature of operational wind 
turbine blades' environments, where they proposed a new diagnostic methodology based on 
novel structural health monitoring (SHM). Gaussian Processes (GPs) were used to predict one 
blade's edge frequencies using another blade's edge frequencies and ambient temperature as 
inputs. The system successfully identified damage onset months before it was remedied. 
Significant losses in wind power occur when turbine blades are damaged beyond repair, making 
early detection crucial. However, diagnosing early damage is challenging due to operational 
constraints and complex diagnostic models. The study of Tang et al. [15] used noise signals from 
turbine operation and the k-nearest neighbour (k-NN) algorithm with generalized fractal 
dimensions (GFDs) as diagnostic features, achieving 98.9% accuracy. The k-NN algorithm is 
simple to implement, and an optimal combination of three parameters—GFD scale index, 
neighbour count, and range formula—was identified, providing a quick, efficient, and accurate 
diagnostic method. 

4.3 Roadmap for next steps 

This use-case builds upon our experience from UC2.1 and leverages the curated data and existing 
literature to quickly develop appropriate models for blade failure detection. The plan includes 
deploying these models in the DS, offering predictive maintenance as a service using established 
interfaces. This approach allows us to focus on model training and take advantage of our prior 
work in UC1.1 and UC2.1. By utilizing our knowledge base from the previous use-case, we can 
accelerate the development process and ensure seamless integration with current systems. This 
strategy enables rapid advancement towards our goal of delivering actionable insights for 
enhanced blade maintenance. 

Leveraging the outcomes of UC2.1, as presented in Section 3.2, it is planned that the 
implementation of UC2.2 will commence in Q1 2025, with the first results expected in early Q2 
2025. 
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5 Lessons learned 
 

5.1 Lessons learned for the Data Space 

Semantic Layer 

Data sharing with clear semantic descriptions is crucial for an effective implementation of 
predictive maintenance ML models. Each manufacturer may use different sensors, 
measurements and data formats, which makes it difficult to harmonize and integrate the data 
without formal definitions of the meaning.  

By employing standardized ontologies, stakeholders can efficiently and in a unified way access 
relevant data, streamlining the integration process and facilitating predictive maintenance 
training data on a large scale, thereby potentially increasing the quality of the predictions. 

 The Vocabulary Hub is defined in the IDS-RAM as a basic building block to achieve semantic 
interoperability in DSs by provisioning common vocabularies. Vocabularies are expressed in 
Resource Description Frameworks (RDF) and use RDF Schema (RDFS) and Web Ontology 
Language (OWL) for ontologies, and Simple Knowledge Organization System (SKOS) for thesauri. 
The IDS-RAM allows for extending the function of the Vocabulary Hub towards providing ontology 
mappings that enable DS connectors to automatically convert data between user-specific and 
standard data formats. Additionally, these standardizations create a shared language across 
different industry players, reducing misunderstandings and ensuring each participant interprets 
data in the same way. Such automatic conversions can be performed by Data Transformation 
Apps by the Data Consumer, the Data Provider, or both. This interoperability is key for achieving 
cross-functional insights, enabling more effective diagnostics and maintenance 
recommendations. 

We see the need for a Semantic Layer for DSs to provide such vocabulary-based services for 
advanced and automated semantic description of metadata and data.  

Architectural Integration 

The focus of the UNDERPIN UCs is to provide predictive maintenance services in a DS based on 
the consolidated data of multiple DS participants. The idea is to achieve higher quality of 
predictive services with higher amounts of training data for the ML algorithms. There is the need 
to eventually consolidate all the training data available in the DS into one storage to run the 
training process or to use federated learning approaches which can be especially useful when 
dealing with sensitive or private information. For UNDERPIN, and because of the harmonization 
needs via a Semantic Layer, we decided to store the integrated data into a time series database, 
which makes it easy to assemble specific training data for the predictive maintenance ML. This 
database selection enables fast querying and retrieval of historical data, which is crucial for 
developing accurate and responsive predictive models. However, the IDS-RAM is based on 
principles of decentralization for data sharing, which does not synergize with a central data 
storage. We can see that we need to have a clear view on the whole system architecture and 
define what is part of the DS and what is outside the DS, but still part of the UNDERPIN 
architecture. The DS components will be dedicated to sovereign data sharing, enabling 
participants to access predictive maintenance services under established contractual terms. 
Such transparency builds trust among DS participants, encouraging broader data contributions 
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and improving the predictive power of the ML models. Meanwhile, training processes can 
proceed independently outside the DS, ensuring transparency and efficiency without 
compromising decentralized data-sharing principles. This dual approach ensures that while data 
remains decentralized, its value is maximized through organized, cohesive processing and 
utilization. 

Data Governance and Security 

Ensuring data sovereignty and granular access control was a primary consideration in planning 
the DS, guiding us to define clear policies on who could access, process, and share data, and 
under what conditions. Compliance with data privacy regulations, was also central to our 
planning, prompting us to consider data anonymization techniques and a secure framework for 
data sharing to mitigate risks of unauthorized access. Additionally, we emphasized the 
importance of real-time auditing and tracking mechanisms in our design to support transparency 
and accountability in data usage and access. Altogether, these considerations influenced our 
planning, laying the groundwork for a robust, secure, and compliant DS infrastructure for future 
data sharing. 

5.2 Lessons learned for stakeholder participation 

Data Collection 

One important issue that arose during the implementation of UC2.1 (and will similarly impact 
UC2.2) relates to the automation of data collection on the user’s side, in this case MORE. In order 
to gain access to the data from the various sensors on the wind turbines, as well as the related 
faults and errors, the operator needs to connect to the wind turbine’s SCADA system, provided 
by the manufacturer, through a dedicated virtual private network (VPN). This means that the user 
needs to go through several layers of credentials before accessing the data, which creates 
impediments in automating the data collection process and instead the data needs to be 
manually downloaded every time in batches. While this does not substantially affect the outcome 
of the use cases, it is nevertheless creating hurdles in our efforts to further streamline the 
process. A potential solution has been examined, by utilizing the robotic process automation 
(RPA) procedures already in place within the Motor Oil group of companies, however said RPAs 
are not allowed to access remote networks for security reasons. We believe this to be a serious 
issue that is not unique to MORE (nor the group as a whole) and we anticipate encountering 
similar issues with other stakeholders further down the line. Moreover, we consider this form of 
“gating” to be antithetical to the European strategy in regard to data sharing. Nevertheless, efforts 
to counteract this particular issue are still ongoing, in order to identify a potential solution. 

5.3 Lessons learned for use case implementation 

Data Quality 

Data from industrial production systems and other industry sources is often flawed, not only due 
to intrinsic issues like sensor noise, equipment malfunctions, and human error, but also due to 
errors introduced during data export. Exporting large volumes of complex data can lead to 
misalignments, truncation, format inconsistencies, and even data loss, further affecting data 
quality. In both presented UCs, we identified such problems and pre-processed the data before 
the data can be used for further analysis. To assist in overcoming these challenges, the designed 
UNDERPIN DS offers a service that assesses key data statistics, providing a preliminary analysis 
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of data quality and common issues. This service allows participants to understand the quality of 
the provided data and better understand potential problems before a data exchange is triggered. 
By identifying and addressing issues early on, participants can avoid costly and time-consuming 
errors that might otherwise compromise the reliability of their analysis. Moreover, based on this 
analysis data scientists and engineers can be supported by their work of data cleaning and pre-
processing. Such proactive measures in data quality management not only streamline the ML 
training process but also enhance the accuracy and consistency of the predictive maintenance 
models.  
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6 Conclusion 
 

This deliverable elaborates on the implementation and validation of the UCs that have been 
identified as suitable to highlight the benefits of the UNDERPIN DS, building upon the planning 
established in D4.1: “Use case planning report”. Deliverable D4.2 provides a comprehensive 
status update in regard to the implementation of the UCs, potential hurdles and solutions, and 
lessons learned, and will be complemented with an updated version by the end of the project, 
which will describe the execution of the UCs and the final outcomes in full detail. 

More specifically, a status update was presented for each UC, with initial results for UC1.1: 
“Monitoring and predictive maintenance in the refinery” and UC2.1: “Predictive maintenance in 
wind farms”, as well as a literature review for UC2.2: “Wind turbine blade repair prediction”, as it 
follows a delayed timeline in order to take advantage of the processes and experience gained 
from UC2.1. Furthermore, a data pipeline is established, showcasing how the UCs make use of 
the DS components. Finally, a roadmap with the next steps for each UC is outlined. The document 
closes with the lessons learned from the first UC implementation stage. 

The outcomes of this first version of deliverable D4.2 create the basis for the successful execution 
of the UNDERPIN UCs, while also identifying potential avenues for improvement. 
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